More research/ Tysabri

If it's on your mind and it has to do with multiple sclerosis in any way, post it here.

More research/ Tysabri

Postby bromley » Fri Jun 09, 2006 12:29 am

Central nervous system beckons attack in MS-like disease

It may sound like a case of blame the victim, but researchers at Washington University School of Medicine in St. Louis have shown that cells in the central nervous system can sometimes send out signals that invite hostile immune system attacks. In mice the researchers studied, this invitation resulted in damage to the protective covering of nerves, causing a disease resembling multiple sclerosis.

"It's been clear for quite a while that our own lymphocytes (white blood cells) have the ability to enter the central nervous system and react with the cells there," says John Russell, Ph.D., professor of molecular biology and pharmacology. "Under normal circumstances, the brain and the immune system cooperate to keep out those cells that might harm the brain. But in people with multiple sclerosis, they get in."

The researchers found that they could prevent destructive immune cells from entering nervous system tissue by eliminating a molecular switch that sends "come here" messages to immune cells. Ordinarily, flipping that switch would cause immune cells to rush to the vicinity of the cells that sent the signals and destroy whatever they consider a danger — including nerve cell coatings.

But in the mice in which the switch was removed, the researchers saw that immune cells previously primed by the scientists to attack the central nervous system (CNS) did not enter the CNS, and the mice stayed healthy.

In contrast, normal mice treated with the same hostile immune cells had numerous immune cells in their CNS tissue and developed symptoms similar to multiple sclerosis.

"What allows the primed lymphocytes into the CNS are signals from the CNS asking them in," Russell says. "We determined that the astrocytes, the specialized cells that provide nutrients to neurons, are among the cells most active in sending signals to attract lymphocytes."

The molecular switch that sends the call to immune cells is termed the tumor necrosis factor receptor (TNFR). When TNFR is activated, it causes cells to send out signal molecules called chemokines that direct immune cells to the site of damage or infection. The researchers found that astrocytes in mice were producing chemokines in response to activation of their TNFR molecules.

TNFR activation also makes the astrocytes bristle with specific adhesion molecules that act like Velcro to bind to similar molecules on the surface of the immune cells. That allows the immune cells that are attracted by the chemokines to stick around and do more harm.

One of the most promising new drugs for treating multiple sclerosis, natalizumab (tradename Tysabri), works by blocking the ability of the immune cells to stick in the CNS through this Velcro mechanism, Russell notes. Natalizumab is being tested in clinical trials and appears to be much better at preventing the nerve cell destruction associated with multiple sclerosis than previous therapies.

"Experiments by others suggested that natalizumab prevented immune cells from crossing the blood-brain barrier — it was thought to prevent the cells from leaving the blood stream," Russell says. "We are working on that question, and we think that it doesn't necessarily prevent them from getting out of the blood, but it does keep them from getting further into the brain. The immune cells pile up in the space around the blood vessels. This space, the perivascular space, serves as a gatekeeper to determine what gets in and what doesn't."

Next, the research team will study various regions of the brain to determine the types of signals sent to and from different areas of the CNS to the immune system.

Gimenez MA, Sim J, Archambault AS, Klein RS, Russell JH. A tumor necrosis factor dependent receptor 1-dependent conversation between central nervous system-specific T cells and the central nervous system is required for inflammatory infiltration of the spinal cord. American Journal of Pathology 2006;168(4):1200-1209.

Funding from the National Institutes of Health, the National Multiple Sclerosis Society and Pfizer Inc. supported this research.

Washington University School of Medicine's full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Source: Washington University in St. Louis Copyright 2000-2006, Washington University in St. Louis
User avatar
bromley
Family Elder
 
Posts: 1887
Joined: Fri Sep 10, 2004 3:00 pm

Advertisement

Postby Lyon » Fri Jun 09, 2006 1:59 pm

:o
Last edited by Lyon on Fri May 06, 2011 9:38 pm, edited 1 time in total.
Lyon
Family Elder
 
Posts: 6063
Joined: Wed May 03, 2006 3:00 pm

Postby bromley » Fri Jun 09, 2006 2:28 pm

Bob,

Thanks. It doesn't take too long - I usually do it at work when I'm having lunch.

I won't be posting in August as I'm off on holiday. The sites I use are:

MSIF - which posts pubmed research papers (usually six or so papers evey fortnight or so)

Boston Cure Project - their news section sometimes includes research pieces

New Zealand MS Society website - which has a daily list of news items

NMSS website

MSRC - which is excellent at posting all the latest key research


I occassionally visit the drugs company websites.

The other sources are the various conferences which take place each year - AAN, ENS, ACTRIMS, ECTRIMS. These are often showcases for trial results.

Ian


Ian
User avatar
bromley
Family Elder
 
Posts: 1887
Joined: Fri Sep 10, 2004 3:00 pm

Postby Lyon » Fri Jun 09, 2006 2:37 pm

:o
Lyon
Family Elder
 
Posts: 6063
Joined: Wed May 03, 2006 3:00 pm


Return to General Discussion

 


  • Related topics
    Replies
    Views
    Last post

Who is online

Users browsing this forum: harry1