Remyelination

If it's on your mind and it has to do with multiple sclerosis in any way, post it here.
Post Reply
User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Remyelination

Post by Petr75 » Mon Feb 25, 2019 12:06 pm

2019 Jan 29
Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
Remyelination promoting therapies in multiple sclerosis animal models: a systematic review and meta-analysis.
PMC https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351564/

Abstract
An unmet but urgent medical need is the development of myelin repair promoting therapies for Multiple Sclerosis (MS). Many such therapies have been pre-clinically tested using different models of toxic demyelination such as cuprizone, ethidium bromide, or lysolecithin and some of the therapies already entered clinical trials. However, keeping track on all these possible new therapies and their efficacy has become difficult with the increasing number of studies. In this study, we aimed at summarizing the current evidence on such therapies through a systematic review and at providing an estimate of the effects of tested interventions by a meta-analysis. We show that 88 different therapies have been pre-clinically tested for remyelination. 25 of them (28%) entered clinical trials. Our meta-analysis also identifies 16 promising therapies which did not enter a clinical trial for MS so far, among them Pigment epithelium-derived factor, Plateled derived growth factor, and Tocopherol derivate TFA-12.We also show that failure in bench to bedside translation from certain therapies may in part be attributable to poor study quality. By addressing these problems, clinical translation might be smoother and possibly animal numbers could be reduced.








User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Re: Remyelination

Post by Petr75 » Tue Feb 26, 2019 12:15 pm

2019 Jan 29
University of California, San Francisco, Weill Institute for Neurosciences, Department of Neurology.
Inception Sciences, San Diego
Selective estrogen receptor modulators enhance CNS remyelination independent of estrogen receptors.
https://www.ncbi.nlm.nih.gov/pubmed/30696729

Abstract
A significant unmet need for patients with multiple sclerosis (MS) is the lack of FDA-approved remyelinating therapies. To this end, we have identified a compelling remyelinating agent, Bazedoxifene (BZA), an EMA-approved (and FDA-approved in combination with conjugated estrogens) selective estrogen receptor modulator (SERM) that could move quickly from bench to bedside. This therapy stands out as a tolerable alternative to previously identified remyelinating agents, or other candidates within this family. Using an unbiased high-throughput screen, with subsequent validation in both murine and human oligodendrocyte precursor cells (OPCs), as well as co-culture systems, we find that BZA enhances differentiation of OPCs into functional oligodendrocytes. Using an in vivo murine model of focal demyelination, we find that BZA enhances OPC differentiation and remyelination. Of critical importance, we find that BZA acts independent of its presumed target, the estrogen receptor, in both in vitro and in vivo systems. Employing a massive computational data integration approach, we independently identify 6 possible candidate targets through which SERMs may mediate their effect on remyelination. Of particular interest, we identify EBP (encoding 3β-hydroxysteroid-Δ8,Δ7-isomerase), a key enzyme in the cholesterol biosynthesis pathway, which was previously implicated as a target for remyelination. These findings provide valuable insights into the implications for SERMs in remyelination for MS and hormonal research at large.SIGNIFICANCE STATEMENTTherapeutics targeted at remyelination failure, which results in axonal degeneration and ultimately disease progression, represents a large unmet need in the multiple sclerosis (MS) population. Here, we have validated a tolerable EMA-approved (FDA-approved in combination with conjugated estrogens) selective estrogen receptor modulator (SERM), Bazedoxifene (BZA), as a potent agent of oligodendrocyte precursor cell (OPC) differentiation and remyelination. SERMs, developed as nuclear estrogen receptor (ER) α and β agonists/antagonists, have previously been implicated in remyelination and neuroprotection, following a heavy focus on estrogens with underwhelming and conflicting results. We show that nuclear ERs are not required for SERMs to mediate their potent effects on OPC differentiation and remyelination in vivo, and highlight EBP, an enzyme in the cholesterol biosynthesis pathway, that could potentially act as a target for SERMs.

User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Re: Remyelination

Post by Petr75 » Wed May 15, 2019 7:29 am

2019
Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
Oligodendrocyte precursor cells as a therapeutic target for demyelinating diseases.
https://www.ncbi.nlm.nih.gov/pubmed/30961866

Abstract
The mechanisms regulating differentiation of multipotent oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs) are critical to our understanding of myelination and remyelination. Following acute demyelination in the central nervous system, adult OPCs migrate to the injury site, differentiate into OLs and generate new myelin sheaths. A common feature of regenerative processes is the fact that remyelination efficiency declines with aging and, accounts for the observation that chronic demyelinating diseases like multiple sclerosis (MS) are characterized by an ineffective remyelination. Without doubt, impairment of OPC differentiation is an essential determinant of the aging effects in remyelination. However, spontaneous remyelination is limited in demyelinating diseases such as MS, owing in part to the failure of adult OPCs to differentiate into myelinating OLs. The inability to restore myelin after injury compromises axon integrity and renders them vulnerable to degeneration. Although the genes that regulate the proliferation and differentiation of OPCs during development have been intensively studied, relatively little is known about the molecular signals that regulate the function of adult OPCs after demyelination. Elucidating the mechanisms regulating OPC differentiation are key to identifying pharmacological targets for remyelination-enhancing therapy. This review will discuss OPC biology, myelination, and possible pharmacological targets for promoting the differentiation of OPCs as a strategy to enhance remyelination, including the potential for nanoscale delivery.

User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Re: Remyelination

Post by Petr75 » Mon May 20, 2019 6:00 am

2019 Apr 18
Department of Physiology & Pharmacology and Program in Chemical Biology, Oregon Health & Science University, Portland
Myelin repair stimulated by CNS-selective thyroid hormone action
https://www.ncbi.nlm.nih.gov/pubmed/30996143

Abstract
Oligodendrocyte processes wrap axons to form neuroprotective myelin sheaths, and damage to myelin in disorders, such as multiple sclerosis (MS), leads to neurodegeneration and disability. There are currently no approved treatments for MS that stimulate myelin repair. During development, thyroid hormone (TH) promotes myelination through enhancing oligodendrocyte differentiation; however, TH itself is unsuitable as a remyelination therapy due to adverse systemic effects. This problem is overcome with selective TH agonists, sobetirome and a CNS-selective prodrug of sobetirome called Sob-AM2. We show here that TH and sobetirome stimulated remyelination in standard gliotoxin models of demyelination. We then utilized a genetic mouse model of demyelination and remyelination, in which we employed motor function tests, histology, and MRI to demonstrate that chronic treatment with sobetirome or Sob-AM2 leads to significant improvement in both clinical signs and remyelination. In contrast, chronic treatment with TH in this model inhibited the endogenous myelin repair and exacerbated disease. These results support the clinical investigation of selective CNS-penetrating TH agonists, but not TH, for myelin repair.

User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Re: Remyelination

Post by Petr75 » Mon May 20, 2019 10:11 am

2019 Apr 18
Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, China
Small Molecules with Big Promises for Curing Demyelinating Diseases
https://www.ncbi.nlm.nih.gov/pubmed/31002801

Abstract
Myelin regeneration by myelinating oligodendrocytes is key to neuronal damage repair for treatment of neurological disorders such as multiple sclerosis. In this issue of Cell Chemical Biology, Allimuthu et al. (2019) report new small molecule inhibitors of cholesterol biosynthesis enzymes that enhance oligodendrocyte formation and subsequent remyelination.

User avatar
NHE
Volunteer Moderator
Posts: 5315
Joined: Sat Nov 20, 2004 3:00 pm
Contact:

Re: Remyelination

Post by NHE » Mon May 20, 2019 12:03 pm

Petr75 wrote:
Mon May 20, 2019 10:11 am
2019 Apr 18
Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, China
Small Molecules with Big Promises for Curing Demyelinating Diseases
https://www.ncbi.nlm.nih.gov/pubmed/31002801
Here's the abstract of the paper that letter discusses.

Diverse Chemical Scaffolds Enhance Oligodendrocyte Formation by Inhibiting CYP51, TM7SF2, or EBP.
Cell Chem Biol. 2019 Apr 18;26(4):593-599.
  • Small molecules that promote oligodendrocyte formation have been identified in "drug repurposing" screens to nominate candidate therapeutics for diseases in which myelin is lost, including multiple sclerosis. We recently reported that many such molecules enhance oligodendrocyte formation not by their canonical targets but by inhibiting a narrow range of enzymes in cholesterol biosynthesis. Here we identify enhancers of oligodendrocyte formation obtained by screening a structurally diverse library of 10,000 small molecules. Identification of the cellular targets of these validated hits revealed a majority inhibited the cholesterol biosynthesis enzymes CYP51, TM7SF2, or EBP. In addition, evaluation of analogs led to identification of CW3388, a potent EBP-inhibiting enhancer of oligodendrocyte formation poised for further optimization.

User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Re: Remyelination

Post by Petr75 » Sat Jun 08, 2019 1:54 am

2019 May 14
Multiple Sclerosis Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles
Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis
https://www.ncbi.nlm.nih.gov/pubmed/31040210

Abstract
Regional differences in neurons, astrocytes, oligodendrocytes, and microglia exist in the brain during health, and regional differences in the transcriptome may occur for each cell type during neurodegeneration. Multiple sclerosis (MS) is multifocal, and regional differences in the astrocyte transcriptome occur in experimental autoimmune encephalomyelitis (EAE), an MS model. MS and EAE are characterized by inflammation, demyelination, and axonal damage, with minimal remyelination. Here, RNA-sequencing analysis of MS tissues from six brain regions suggested a focus on oligodendrocyte lineage cells (OLCs) in corpus callosum. Olig1-RiboTag mice were used to determine the translatome of OLCs in vivo in corpus callosum during the remyelination phase of a chronic cuprizone model with axonal damage. Cholesterol-synthesis gene pathways dominated as the top up-regulated pathways in OLCs during remyelination. In EAE, remyelination was induced with estrogen receptor-β (ERβ) ligand treatment, and up-regulation of cholesterol-synthesis gene expression was again observed in OLCs. ERβ-ligand treatment in the cuprizone model further increased cholesterol synthesis gene expression and enhanced remyelination. Conditional KOs of ERβ in OLCs demonstrated that increased cholesterol-synthesis gene expression in OLCs was mediated by direct effects in both models. To address this direct effect, ChIP assays showed binding of ERβ to the putative estrogen-response element of a key cholesterol-synthesis gene (Fdps). As fetal OLCs are exposed in utero to high levels of estrogens in maternal blood, we discuss how remyelinating properties of estrogen treatment in adults during injury may recapitulate normal developmental myelination through targeting cholesterol homeostasis in OLCs.

User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Re: Remyelination

Post by Petr75 » Sun Oct 13, 2019 3:23 am

2019 Aug 3
Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
The Molecular Basis for Remyelination Failure in Multiple Sclerosis.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721708/

Abstract
Myelin sheaths in the central nervous system (CNS) insulate axons and thereby allow saltatory nerve conduction, which is a prerequisite for complex brain function. Multiple sclerosis (MS), the most common inflammatory autoimmune disease of the CNS, leads to the destruction of myelin sheaths and the myelin-producing oligodendrocytes, thus leaving behind demyelinated axons prone to injury and degeneration. Clinically, this process manifests itself in significant neurological symptoms and disability. Resident oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) are present in the adult brain, and can differentiate into mature oligodendrocytes which then remyelinate the demyelinated axons. However, for multiple reasons, in MS the regenerative capacity of these cell populations diminishes significantly over time, ultimately leading to neurodegeneration, which currently remains untreatable. In addition, microglial cells, the resident innate immune cells of the CNS, can contribute further to inflammatory and degenerative axonal damage. Here, we review the molecular factors contributing to remyelination failure in MS by inhibiting OPC and NSC differentiation or modulating microglial behavior.

User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Re: Remyelination

Post by Petr75 » Fri Oct 25, 2019 11:45 pm

2019 Jun 28
Department of Histology and Embryology, Brain Science Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
Kappa opioid receptor and oligodendrocyte remyelination
https://www.ncbi.nlm.nih.gov/pubmed/31421704

Abstract
Adult oligodendrocyte precursor cells (OPCs) maintain the abilities to differentiate and myelinate denuded axons in demyelinating diseases, such as Multiple Sclerosis (MS), albert often inefficiently. Remyelination therapies seek to enhance endogenous remyelination and represent a promising approach to achieve functional and cellular architectural recovery against neuronal deficits. Recent findings indicate that the kappa opioid receptor (KOR), a G-protein coupled receptor (GPCR), plays an important role in regulating oligodendrocyte differentiation and myelination. In this chapter, we reviewed (1) current knowledge of the functional importance of remyelination in demyelination diseases; (2) the opioids that can alter oligodendroglial proliferation and differentiation; (3) the endogenous KOR signaling in regulating oligodendrocyte myelination.

User avatar
CureOrBust
Family Elder
Posts: 3367
Joined: Wed Jul 27, 2005 2:00 pm
Location: Sydney, Australia

Re: Remyelination

Post by CureOrBust » Sun Oct 27, 2019 3:51 am

maybe this thread would of been a better place to post this item
Current advancements in promoting remyelination in multiple sclerosis (published 2019)
viewtopic.php?f=13&t=31161

User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Re: Remyelination

Post by Petr75 » Thu Nov 14, 2019 9:56 am

2019 Oct 3
MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridgem, UK
Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells
https://www.ncbi.nlm.nih.gov/pubmed/31585093

Abstract
The age-related failure to produce oligodendrocytes from oligodendrocyte progenitor cells (OPCs) is associated with irreversible neurodegeneration in multiple sclerosis (MS). Consequently, regenerative approaches have significant potential for treating chronic demyelinating diseases. Here, we show that the differentiation potential of adult rodent OPCs decreases with age. Aged OPCs become unresponsive to pro-differentiation signals, suggesting intrinsic constraints on therapeutic approaches aimed at enhancing OPC differentiation. This decline in functional capacity is associated with hallmarks of cellular aging, including decreased metabolic function and increased DNA damage. Fasting or treatment with metformin can reverse these changes and restore the regenerative capacity of aged OPCs, improving remyelination in aged animals following focal demyelination. Aged OPCs treated with metformin regain responsiveness to pro-differentiation signals, suggesting synergistic effects of rejuvenation and pro-differentiation therapies. These findings provide insight into aging-associated remyelination failure and suggest therapeutic interventions for reversing such declines in chronic disease.

User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Re: Remyelination

Post by Petr75 » Tue Nov 19, 2019 6:00 am

2019 Oct 16
Department of Physiology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis.
https://www.ncbi.nlm.nih.gov/pubmed/31620963

Abstract
PURPOSE:
Oligodendrocytes (OLGs) damage and myelin distraction is considered as a critical step in many neurological disorders especially multiple sclerosis (MS). Cuprizone (cup) animal model of MS targets OLGs degeneration and frequently used to the mechanistic understanding of de- and remyelination. The aim of this study was exploring the effects of metformin on the OLGs regeneration, myelin repair and profile of neurotrophic factors in the mice brain after cup-induced acute demyelination.
METHODS:
Mice (C57BL/6 J) were fed with chow containing 0.2% cup for 5 weeks to induce specific OLGs degeneration and acute demyelination. Next, the cup was withdrawn to allow one-week recovery (spontaneous remyelination). At the end of this period, mature OLGs markers, myelin-associated neurite outgrowth inhibitor protein A (NogoA), premature specific OLGs transcription factor (Olig2), anti-apoptosis marker (survivin), neurotrophic factors, and AMPK activation were monitored in the presence or absence of metformin (50 mg/kg body weight/day) in the corpus callosum (CC).
RESULTS:
Our finding indicated that consumption of metformin during the recovery period potentially induced an active form of AMPK (p-AMPK) and promoted repopulation of mature OLGs (MOG+ cells, MBP+ cells) in CC through up-regulation of BDNF, CNTF, and NGF as well as down-regulation of NogoA and recruitment of Olig2+ precursor cells.
CONCLUSIONS:
This study for the first time reveals that metformin-induced AMPK, a master regulator of energy homeostasis, activation following toxic demyelination could potentially accelerate regeneration and supports spontaneous demyelination. These findings suggest the development of new therapeutic strategies based on AMPK activation for MS in the near future. Graphical abstract An overview of the possible molecular mechanisms of action of metformin-mediated remyelinationa.

User avatar
NHE
Volunteer Moderator
Posts: 5315
Joined: Sat Nov 20, 2004 3:00 pm
Contact:

Re: Remyelination

Post by NHE » Tue Nov 19, 2019 12:43 pm

Interesting. Life Extension sells an AMPK Activator supplement. They promote it for weight loss. Has anybody tried it?

https://www.vitacost.com/life-extension ... -activator

User avatar
Petr75
Family Elder
Posts: 545
Joined: Sat Oct 19, 2013 10:17 am
Location: Czech Republic

Re: Remyelination

Post by Petr75 » Tue Nov 26, 2019 9:33 am

2019 Nov 12
Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine
Fibrotic scar after experimental autoimmune encephalomyelitis inhibits oligodendrocyte differentiation.
https://www.ncbi.nlm.nih.gov/pubmed/31731043

Abstract
Remyelination failure is a crucial component of disease progression in the autoimmune demyelinating disease Multiple Sclerosis (MS). The regenerative capacity of oligodendrocyte progenitor cells (OPCs) to replace myelinating oligodendrocytes is likely influenced by many aspects of the lesion environment including inflammatory signaling and extracellular matrix (ECM) deposition. These features of MS lesions are typically attributed to infiltrating leukocytes and reactive astrocytes. Here we demonstrate that fibroblasts also contribute to the inhibitory environment in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Using Col1α1GFP transgenic mice, we show that perivascular fibroblasts are activated in the spinal cord at EAE onset, and infiltrate the parenchyma by the peak of behavioral deficits where they are closely associated with areas of demyelination, myeloid cell accumulation, and ECM deposition. We further show that both fibroblast conditioned media and fibroblast ECM inhibit the differentiation of OPCs into mature oligodendrocytes. Taken together, our results indicate that the fibrotic scar is a major component of EAE pathology that leads to an inhibitory environment for remyelination, thus raising the possibility that anti-fibrotic mechanisms may serve as novel therapeutic targets for MS.

Post Reply
  • Similar Topics
    Replies
    Views
    Last post