Lowering Insulin

If it's on your mind and it has to do with multiple sclerosis in any way, post it here.
Post Reply
User avatar
Family Elder
Posts: 846
Joined: Thu Dec 01, 2005 3:00 pm

Lowering Insulin

Post by gwa » Mon Jun 11, 2007 4:57 am

Here is another article for you, lyndacarol.

http://www.medicalnewstoday.com/medical ... wsid=73284

Medical News Today
Hormone Found In Liver Helps To Induce Ketosis, The Unique Metabolic State Brought About By Low-Carbohydrate Diets
11 Jun 2007

Over the past several years, animal studies have shown that high-fat, low-carbohydrate "ketogenic" diets cause
demonstrable changes in metabolism and subsequent weight loss. Now, researchers at Beth Israel Deaconess Medical
Center (BIDMC) have identified a key mechanism behind this turn of events. Their findings, which appear in the
June 2007 issue of Cell Metabolism, demonstrate that a liver hormone known as FGF21 is required to oxidize fatty
acids - and thereby burn calories.

"When the diet is extremely low in starches and sugars, blood sugar levels drop substantially so that muscle and
brain have to turn to alternative fuels," explains senior author Eleftheria Maratos-Flier, MD, an investigator in
the Department of Endocrinology, Diabetes and Metabolism at BIDMC and Associate Professor of Medicine at Harvard
Medical School. "Consequently, fatty acids are broken down in the liver and converted to ketones, which then serve
as a major fuel source."

Known as ketosis, this metabolic state is characterized by extremely low insulin levels, as would occur during
periods of fasting or starvation or while consuming a low-carb diet, such as the popular Atkins diet model.

For the past several years, Maratos-Flier's laboratory has been studying the physiologic states of animals
consuming various types of diets -- including standard "animal chow" diets and diets moderately high in both fats
and carbohydrates, as well as ketogenic diets. And she has found through her experiments that even though mice
are fed exactly the same number of calories, the composition of the calories causes them to gain weight in
different ways.

"The differences in weight gain reflect differences in metabolic rates," she explains. "These, in turn, result
in hormonal changes that lead to different disposition of the calories."

In this latest paper, Maratos-Flier and colleagues studied mice that had been fed a ketogenic diet high in both
saturated fat and unsaturated fat and practically devoid of carbohydrates.

"Despite the high fat content of this diet, the study animals maintained normal levels of circulating lipids,"
she explains. "We wanted to learn what factors might be responsible for creating this state in which consumed
calories were being burned off in the liver rather than being stored as fat."

Because the physiologic changes in the animals didn't appear to be explained by typical hormonal regulators -
neurotransmitters that normally regulate appetite - the researchers set out to identify which genes were unique
to this ketogenic phenotype, exploring the possibility that hepatocytes were playing an active role in the process.

And, using micoarray gene analysis, they discovered that their hunch was correct: FGF21, a liver-derived fibroblast
growth factor gene, was significantly increased in the mice that had been fed ketogenic diets.

"FGF21 had previously been identified as a potential metabolic regulator by scientists at Eli Lilly, who showed that
transgenic mice that overexpressed FGF21 were protected from diet-induced obesity, had smaller fat cells and had
more brown adipose tissue,"says Maratos-Flier. "But little was actually known about FGF21's physiologic roles.
Working with Jeffrey Flier's lab, we were able to show that FGF21 is essential for fatty acid oxidation."

Furthermore, she explains, when FGF21 was inhibited, the mice developed a massive accumulation of fat in the liver
and an extreme increase in circulating lipids.

A second study by Maratos-Flier and colleagues published in the June 2007 issue of the American Journal of
Physiology further elucidates the unique metabolic changes that occur with the consumption of a ketogenic diet.

"Although the purpose of both of these studies was to glean insights into metabolic physiology, our findings
suggest that increased levels of FGF21 may be a potential mechanism behind low-carbohydrate diets' beneficial
properties when it comes to lipid metabolism," says Maratos-Flier. "Diets that limit carbohydrates and eliminate
transfats, and at the same time emphasize fiber and good fats, appear to be healthiest, especially among
individuals who are predisposed to developing diabetes."


This study was supported, in part, by grants from the National Institutes of Health and from Takeda Pharmaceuticals.

Coauthors include BIDMC investigators Michael Badman (lead author), Pavlos Pissios, Adam Kennedy and Jeffrey S.
Flier, MD; and George Koukos of Boston University School of Medicine.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School
and ranks third in National Institutes of Health funding among independent hospitals nationwide. BIDMC is
clinically affiliated with the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer

User avatar
Family Elder
Posts: 3388
Joined: Thu Dec 22, 2005 3:00 pm

Thank you, gwa!!

Post by lyndacarol » Mon Jun 11, 2007 3:26 pm

GWA, thank you so-o-o much!! You must realize how I love this kind of stuff!!

User avatar
Family Elder
Posts: 846
Joined: Thu Dec 01, 2005 3:00 pm

Post by gwa » Tue Jun 12, 2007 6:18 am


It has been known for years that people who go on the Atkins diet lower their sugar level and many people go off insulin after a short period of time on the diet.

Finally the key to what is happening supports Atkins theory. The one thing that I am curious about is when Tonyjeggs wrote that the brain cannot function on ketones and needs carbohydrates.

At the time I read his post I remembered that the doctors at John Hopkins put kids on a high fat, almost no carbohydrate diet for long periods of time to stop seizures. If the brain needs carbs to function, I don't see how they can keep the kids off carbs for a year at a time.


User avatar
Family Elder
Posts: 3388
Joined: Thu Dec 22, 2005 3:00 pm

On carbs, ketones, and insulin

Post by lyndacarol » Tue Jun 12, 2007 5:01 pm

GWA--I, too, had questions on Tony's comment that the brain needed only glucose; but I assumed he was the scientist and knew better than I. He disputed the validity of my source, Dr. Rosedale, who proposed ketones for energy. I cannot support another energy source until I find another informational source.

You also said:
At the time I read his post I remembered that the doctors at John Hopkins put kids on a high fat, almost no carbohydrate diet for long periods of time to stop seizures. If the brain needs carbs to function, I don't see how they can keep the kids off carbs for a year at a time.
I thought I had read about this, too; but I can't locate my source for that--it frustrates me so when I can't remember!!!! My fear is that MS is affecting memory now.

User avatar
Family Elder
Posts: 846
Joined: Thu Dec 01, 2005 3:00 pm

High Fat Diet

Post by gwa » Tue Jun 12, 2007 6:22 pm


Here is one article about the high fat diet.

http://pediatrics.aappublications.org/c ... /108/4/898

The Ketogenic Diet: A 3- to 6-Year Follow-Up of 150 Children Enrolled Prospectively

Received Nov 21, 2000; accepted Mar 21, 2001.
Cheryl Hemingway, John M. Freeman, Diana J. Pillas, and Paula L. Pyzik

From the Johns Hopkins Medical Institutions, Baltimore, Maryland.

Objective. To document the long-term outcome of the 83 children with difficult-to-control seizures who were enrolled prospectively in a study of the efficacy of the ketogenic diet and who had remained on the diet for 1 year.

Methods. A total of 150 consecutive children were entered prospectively into a study of the ketogenic diet's efficacy and tolerability. Three to 6 years after diet initiation, all 150 families were sent a survey inquiring about their child's current health status, seizure frequency, and current anticonvulsant medications. They were asked about their experience with the diet and reasons for discontinuation. Several telephone attempts were made to contact those who did not respond to the written questionnaire. Responses were entered in an Access database and analyzed.

Results. In 1999, 3 to 6 years after initiating the diet, 107 of 150 families responded to a questionnaire. Thirty-five additional families were interviewed by telephone, 4 were lost to follow-up, and 4 children had died, unrelated to the diet. Of the original 150 patient cohort, 20 (13%) were seizure-free and an additional 21 (14%) had a 90% to 99% decrease in their seizures. Twenty-nine were free of medications, and 28 were on only 1 medication; 15 remained on the diet. There were no known cardiac complications.

Conclusion. Three to 6 years after initiation, the ketogenic diet had proven to be effective in the control of difficult-to-control seizures in children. The diet often allows decrease or discontinuation of medication. It is more effective than many of the newer anticonvulsants and is well-tolerated when it is effective. Key words: seizures, epilepsy, ketogenic diet.

Post Reply
  • Similar Topics
    Last post