This paper speaks about several failures in clinical trials. Among them Atacicept, Tabalumab, Abatacept, Vitamin D, Temelimab (surprinsingly), Raltegravir, Rituximab (in PPMS), Imilecleucel (TCelna, Tovaxin), Fingolimod (for PPMS), Natalizumab for PPMS and Cyclophosphamide for SPMS,
Failed, Interrupted, or Inconclusive Trials on Immunomodulatory Treatment Strategies in Multiple Sclerosis: Update 2015–2020
https://link.springer.com/content/pdf/1 ... 0435-w.pdf
Abstract
In the past decades, multiple sclerosis (MS) treatment has experienced vast changes resulting from major advances in disease-modifying therapies (DMT).
Looking at the overall number of studies, investigations with therapeutic advantages and encouraging results are exceeded by studies of promising compounds that failed due to either negative or inconclusive results or have been interrupted for other reasons. Importantly, these failed clinical trials are informative experiments that can help us to understand the pathophysiological mechanisms underlying MS. In several trials, concepts taken from experimental models were not translatable to humans, although they did not lack a well-considered pathophysiological rationale.
The lessons learned from these discrepancies may benefit future studies and reduce the risks for patients. This review summarizes trials on MS since 2015 that have either failed or have been interrupted for various reasons. We identify potential causes of failure or inconclusiveness, looking at the path from basic animal experiments to clinical trials, and discuss the implications for our current view on MS pathogenesis, clinical practice, and future study designs. We focus on anti-inflammatory treatment strategies, without including studies on already approved and effective DMT.
Clinical trials addressing neuroprotective and alternative treatment strategies are presented in a separate article.
Failed trials that can yield some clues into pathogenesis
A forum to discuss research on the origins of MS and its development.
Return to “MS Etiology and Pathogenesis”
Jump to
- Multiple Sclerosis
- ↳ General Discussion
- ↳ Introductions
- ↳ Drug Pipeline
- ↳ Regimens
- ↳ Undiagnosed
- ↳ MS Etiology and Pathogenesis
- Treatments
- ↳ Chronic Cerebrospinal Venous Insufficiency (CCSVI)
- ↳ Low Dose Naltrexone
- ↳ Tysabri (Antegren, Natalizumab)
- ↳ Copaxone
- ↳ Glatopa
- ↳ Avonex
- ↳ Rebif
- ↳ Betaseron
- ↳ Plegridy
- ↳ Novantrone
- ↳ Aimspro
- ↳ Diet
- ↳ Stem Cells
- ↳ Antibiotics
- ↳ Campath (Lemtrada, Alemtuzumab)
- ↳ Gene Therapy
- ↳ Natural Approach
- ↳ Biotin (Qizenday, Cerenday, MD1003)
- ↳ Coimbra High-Dose Vitamin D Protocol
- ↳ Statins
- ↳ Tcelna (Tovaxin)
- ↳ Revimmune (Cyclophosphamide, Cytoxan)
- ↳ Medical Devices
- ↳ Rituxan (Rituximab)
- ↳ Ocrevus (Ocrelizumab)
- ↳ Kesimpta (Ofatumumab)
- ↳ Briumvi (Ublituximab-xiiy)
- ↳ General Medications
- ↳ Tecfidera (BG-12, Dimethyl fumarate)
- ↳ Vumerity (Diroximel fumarate)
- ↳ Bafiertam (Monomethyl fumarate)
- ↳ Gilenya
- ↳ Aubagio (Teriflunomide)
- ↳ Mayzent (Siponimod)
- ↳ Zeposia (Ozanimod)
- ↳ Ponvory (Ponesimod)
- ↳ Mavenclad (Cladribine)
- ↳ Ampyra (Dalfampridine)
- ↳ Medical Marijuana
- ↳ Sativex
- ↳ Chiropractic Treatment
- Life
- ↳ Daily Life
- ↳ Veterans and MS
- ↳ Trigeminal Neuralgia in MS
- ↳ Reading Nook
- ↳ Humor
- ↳ Shopping
- ↳ Friends and Family
- ↳ Mental & Spiritual Health
- ↳ Exercise and Physical Therapy
- ↳ Under 25 with MS
- ↳ MS in the Golden Years
- ↳ Parenting Kids With MS
- ↳ Parents with MS
- ThisIsMS.com
- ↳ Site Support
- ↳ Suggestions