https://link.springer.com/article/10.11 ... 21-00289-1
MiRNA dysregulation multiple sclerosis
MiRNAs dysregulation display strong association with multiple sclerosis (MS). Several MiRNAs were reported to be consistently upregulated in MS patients including miR-142-3p, miR-145, miR-146a/b, miR-22, miR-155, miR223/-3p, miR-584, and miR-326. Overexpression of these miRNAs in MS patients suggests their implication in the pathogenic inflammatory process observed in MS. miR-155 was one of the most consistently dysregulated miRNA in MS. It has a role in disruption of the blood-brain barrier, immune cell activation and neurodegeneration [54, 55]. Upregulation of miR-155 was significantly reduced by immunomodulatory medications such as glatiramer acetate (GA), supporting its potential role in the pathogenic pro-inflammatory process [56, 57]. miR-146 has also been reported to be upregulated in the blood and CNS lesions of MS patients [57].
miR-17, miR-21, miR-320, and miR-150 exhibited different patterns across the compartments in MS patients with predominant upregulation in the CNS lesions and downregulation in the immune tissue [55, 58, 59]. Interestingly, It has been reported that miR-21 exhibit both pro- and anti-inflammatory functions. It is upregulated in the active disease and downregulated in remission state and in secondary progressive MS [60].
On the other hand, members of the miR-103, miR-548 miR-15, and let-7 families were consistently downregulated in MS patients. Let-7 and miR-548 family members were exclusively dysregulated in the immune compartment while miR-103 family and miR-15a/b were downregulated in all cellular compartments apart from regulatory T cells [55]. Dysregulation of different MiRNAs targeting the inflammatory activity of various immune cells was shown in Fig. 5 [55, 58, 61, 62].
Free full text.
MicroRNA in MS and other diseases
A forum to discuss research on the origins of MS and its development.
Return to “MS Etiology and Pathogenesis”
Jump to
- Multiple Sclerosis
- ↳ General Discussion
- ↳ Introductions
- ↳ Drug Pipeline
- ↳ Regimens
- ↳ Undiagnosed
- ↳ MS Etiology and Pathogenesis
- Treatments
- ↳ Chronic Cerebrospinal Venous Insufficiency (CCSVI)
- ↳ Low Dose Naltrexone
- ↳ Tysabri (Antegren, Natalizumab)
- ↳ Copaxone
- ↳ Glatopa
- ↳ Avonex
- ↳ Rebif
- ↳ Betaseron
- ↳ Plegridy
- ↳ Novantrone
- ↳ Aimspro
- ↳ Diet
- ↳ Stem Cells
- ↳ Antibiotics
- ↳ Campath (Lemtrada, Alemtuzumab)
- ↳ Gene Therapy
- ↳ Natural Approach
- ↳ Biotin (Qizenday, Cerenday, MD1003)
- ↳ Coimbra High-Dose Vitamin D Protocol
- ↳ Statins
- ↳ Tcelna (Tovaxin)
- ↳ Revimmune (Cyclophosphamide, Cytoxan)
- ↳ Medical Devices
- ↳ Rituxan (Rituximab)
- ↳ Ocrevus (Ocrelizumab)
- ↳ Kesimpta (Ofatumumab)
- ↳ Briumvi (Ublituximab-xiiy)
- ↳ General Medications
- ↳ Tecfidera (BG-12, Dimethyl fumarate)
- ↳ Vumerity (Diroximel fumarate)
- ↳ Bafiertam (Monomethyl fumarate)
- ↳ Gilenya
- ↳ Aubagio (Teriflunomide)
- ↳ Mayzent (Siponimod)
- ↳ Zeposia (Ozanimod)
- ↳ Ponvory (Ponesimod)
- ↳ Mavenclad (Cladribine)
- ↳ Ampyra (Dalfampridine)
- ↳ Medical Marijuana
- ↳ Sativex
- ↳ Chiropractic Treatment
- Life
- ↳ Daily Life
- ↳ Veterans and MS
- ↳ Trigeminal Neuralgia in MS
- ↳ Reading Nook
- ↳ Humor
- ↳ Shopping
- ↳ Friends and Family
- ↳ Mental & Spiritual Health
- ↳ Exercise and Physical Therapy
- ↳ Under 25 with MS
- ↳ MS in the Golden Years
- ↳ Parenting Kids With MS
- ↳ Parents with MS
- ThisIsMS.com
- ↳ Site Support
- ↳ Suggestions