Besides the biomarkers for diagnosis there are also biomarkers that can predict the response to an specific therapy. They can also shed some light about MS pathogenesis, and specifically about its heterogeneity. Here is a review about them as of 2017.
Pharmacogenetic Biomarkers to Predict Treatment Response in Multiple Sclerosis: Current and Future Perspectives.
https://www.ncbi.nlm.nih.gov/pubmed/28804651
Abstract
Disease-modifying therapies (DMTs) have significantly advanced the treatment of relapsing multiple sclerosis (MS), decreasing the frequency of relapses, disability, and magnetic resonance imaging lesion formation. However, patients' responses to and tolerability of DMTs vary considerably, creating an unmet need for biomarkers to identify likely responders and/or those who may have treatment-limiting adverse reactions.
Most studies in MS have focused on the identification of pharmacogenetic markers, using either the candidate-gene approach, which requires prior knowledge of the genetic marker and its role in the target disease, or genome-wide association, which examines multiple genetic variants, typically single nucleotide polymorphisms (SNPs). Both approaches have implicated numerous alleles and SNPs in response to selected MS DMTs. None have been validated for use in clinical practice.
This review covers pharmacogenetic markers in clinical practice in other diseases and then reviews the current status of MS DMT markers (interferon β, glatiramer acetate, and mitoxantrone). For a complex disease such as MS, multiple biomarkers may need to be evaluated simultaneously to identify potential responders. Efforts to identify relevant biomarkers are underway and will need to be expanded to all MS DMTs.
These will require extensive validation in large patient groups before they can be used in clinical practice.
Biomarkers for response to therapy thread
A forum to discuss research on the origins of MS and its development.
Return to “MS Etiology and Pathogenesis”
Jump to
- Multiple Sclerosis
- ↳ General Discussion
- ↳ Introductions
- ↳ Drug Pipeline
- ↳ Regimens
- ↳ Undiagnosed
- ↳ MS Etiology and Pathogenesis
- Treatments
- ↳ Chronic Cerebrospinal Venous Insufficiency (CCSVI)
- ↳ Low Dose Naltrexone
- ↳ Tysabri (Antegren, Natalizumab)
- ↳ Copaxone
- ↳ Glatopa
- ↳ Avonex
- ↳ Rebif
- ↳ Betaseron
- ↳ Plegridy
- ↳ Novantrone
- ↳ Aimspro
- ↳ Diet
- ↳ Stem Cells
- ↳ Antibiotics
- ↳ Campath (Lemtrada, Alemtuzumab)
- ↳ Gene Therapy
- ↳ Natural Approach
- ↳ Biotin (Qizenday, Cerenday, MD1003)
- ↳ Coimbra High-Dose Vitamin D Protocol
- ↳ Statins
- ↳ Tcelna (Tovaxin)
- ↳ Revimmune (Cyclophosphamide, Cytoxan)
- ↳ Medical Devices
- ↳ Rituxan (Rituximab)
- ↳ Ocrevus (Ocrelizumab)
- ↳ Kesimpta (Ofatumumab)
- ↳ Briumvi (Ublituximab-xiiy)
- ↳ General Medications
- ↳ Tecfidera (BG-12, Dimethyl fumarate)
- ↳ Vumerity (Diroximel fumarate)
- ↳ Bafiertam (Monomethyl fumarate)
- ↳ Gilenya
- ↳ Aubagio (Teriflunomide)
- ↳ Mayzent (Siponimod)
- ↳ Zeposia (Ozanimod)
- ↳ Ponvory (Ponesimod)
- ↳ Mavenclad (Cladribine)
- ↳ Ampyra (Dalfampridine)
- ↳ Medical Marijuana
- ↳ Sativex
- ↳ Chiropractic Treatment
- Life
- ↳ Daily Life
- ↳ Veterans and MS
- ↳ Trigeminal Neuralgia in MS
- ↳ Reading Nook
- ↳ Humor
- ↳ Shopping
- ↳ Friends and Family
- ↳ Mental & Spiritual Health
- ↳ Exercise and Physical Therapy
- ↳ Under 25 with MS
- ↳ MS in the Golden Years
- ↳ Parenting Kids With MS
- ↳ Parents with MS
- ThisIsMS.com
- ↳ Site Support
- ↳ Suggestions