Here is more linking the gliadin/zonulin to MS:
1: Gastroenterology. 2008 Jul;135(1):194-204.e3. Epub 2008 Mar 21. Links
Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, Rallabhandi P, Shea-Donohue T, Tamiz A, Alkan S, Netzel-Arnett S, Antalis T, Vogel SN, Fasano A.
Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
BACKGROUND & AIMS: Celiac disease is an immune-mediated enteropathy triggered by gliadin, a component of the grain protein gluten. Gliadin induces an MyD88-dependent zonulin release that leads to increased intestinal permeability, a postulated early element in the pathogenesis of celiac disease. We aimed to establish the molecular basis of gliadin interaction with intestinal mucosa leading to intestinal barrier impairment. METHODS: Alpha-gliadin affinity column was loaded with intestinal mucosal membrane lysates to identify the putative gliadin-binding moiety. In vitro experiments with chemokine receptor CXCR3 transfectants were performed to confirm binding of gliadin and/or 26 overlapping 20mer alpha-gliadin synthetic peptides to the receptor. CXCR3 protein and gene expression were studied in intestinal epithelial cell lines and human biopsy specimens. Gliadin-CXCR3 interaction was further analyzed by immunofluorescence microscopy, laser capture microscopy, real-time reverse-transcription polymerase chain reaction, and immunoprecipitation/Western blot analysis. Ex vivo experiments were performed using C57BL/6 wild-type and CXCR3(-/-) mouse small intestines to measure intestinal permeability and zonulin release. RESULTS: Affinity column and colocalization experiments showed that gliadin binds to CXCR3 and that at least 2 alpha-gliadin 20mer synthetic peptides are involved in this binding. CXCR3 is expressed in mouse and human intestinal epithelia and lamina propria. Mucosal CXCR3 expression was elevated in active celiac disease but returned to baseline levels following implementation of a gluten-free diet. Gliadin induced physical association between CXCR3 and MyD88 in enterocytes. Gliadin increased zonulin release and intestinal permeability in wild-type but not CXCR3(-/-) mouse small intestine. CONCLUSIONS: Gliadin binds to CXCR3 and leads to MyD88-dependent zonulin release and increased intestinal permeability.
PMID: 18485912 [PubMed - indexed for MEDLINE]
link
the CXCR3 receptor appears to be related to MS tissue injury:
1: Mult Scler. 2008 Sep;14(8):1036-43. Epub 2008 Aug 13. Links
Multiple sclerosis: chemokine receptor expression on circulating lymphocytes in correlation with radiographic measures of tissue injury.Fox RJ, Kivisakk P, Fisher E, Tucky B, Lee JC, Rudick RA, Ransohoff RM.
Department of Neurology, Mellen Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
foxr@ccf.org
BACKGROUND: Leukocytes expressing inflammatory chemokine receptors (CKRs), most consistently CCR2, CCR5, and CXCR3, have been identified in multiple sclerosis (MS) tissue lesions and provide attractive therapeutic targets. Our previous studies found large inter-individual differences in expression of these CKRs but stable levels over time within subjects. This observation suggests a CKR "set-point" within individuals, which might relate to inflammatory injury in MS. We evaluated the correlation between CKR levels and magnetic resonance imaging (MRI) measures of disease activity. METHODS: Fifty-five relapsing remitting MS (RRMS) and secondary progressive MS (SPMS) patients were prospectively followed with annual CKR and MRI studies. Multiparameter flow cytometry was used to determine CCR2, CCR5, and CXCR3 expression on CD4 and CD8 cells. Simultaneous cranial MRIs were performed, and quantitative measures of T2, T1, and gadolinium lesions, brain parenchymal fraction (BPF), and whole brain and fractionated magnetization transfer ratio (MTR) were performed using automated software. Spearman's rank correlations evaluated the relationship between CKR levels and MRI measures. RESULTS:
Significant correlations were observed between CXCR3 expression on CD8 cells and measures of new (T1) and total (T1, T2) lesion volumes, lesion MTR, and BPF; higher levels of CXCR3 expression were correlated with greater injury on MRI (|r| = 0.27-0.42). In contrast, CD4 cell CKR expression was only minimally correlated with MRI measures. CONCLUSIONS: Over 2 years, we observed significant correlations between the percent of CD8 cells expressing CXCR3 and MRI measures of MS inflammatory activity and tissue destruction. These observations are consistent with a pathogenic role for cytotoxic T cells in MS brain and have significant implications regarding T-cell targeted therapeutic strategies.
PMID: 18701575 [PubMed - in process]
link
a herbal remedy for this:
1: J Pharmacol Exp Ther. 2006 Sep;318(3):1153-62. Epub 2006 Jun 2. Links
Periplocoside E inhibits experimental allergic encephalomyelitis by suppressing interleukin 12-dependent CCR5 expression and interferon-gamma-dependent CXCR3 expression in T lymphocytes.Zhu YN, Zhong XG, Feng JQ, Yang YF, Fu YF, Ni J, Liu QF, Tang W, Zhao WM, Zuo JP.
Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.
Periplocoside E (PSE) was found to inhibit primary T-cell activation in our previous study. Now we examined the effect and mechanisms of PSE on the central nervous system (CNS) demyelination in experimental allergic encephalomyelitis (EAE). C57BL/6 mice immunized with myelin oligodendrocyte glyco-protein (MOG) were treated with PSE following immunization and continued throughout the study. The effect on the progression of EAE and other relevant parameters were assessed. PSE reduced the incidence and severity of EAE. Spinal cord histopathology analysis showed that the therapeutic effect of PSE was associated with reduced mononuclear cell infiltration and CNS inflammation. As reverse transcription-polymerase chain reaction analysis showed, PSE decreased the CD4(+), CD8(+), and CD11b(+) cell infiltration. T cells from lymph nodes of MOG-immunized mice expressed enhanced levels of CCR5 and CXCR3 mRNA compared with T cells from normal mice. However, CCR5 and CXCR3 expressions were suppressed in T cells from PSE-treated mice. In vitro study also showed PSE inhibited interferon (IFN)-gamma-dependent CXCR3 expression in T cells through suppressing T-cell receptor (TCR) ligation-induced IFN-gamma production, whereas it inhibited interleukin (IL)-12-dependent CCR5 expression through suppressing IL-12 reactivity in TCR-triggered T cells. As a result, the initial influx of T cells into CNS was inhibited in PSE-treated mice. The consequent activation of macrophages/microglia cells was inhibited in spinal cord from PSE-treated mice as determination of chemokine expressions (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10). Consistently, the secondary influx of CD4(+), CD8(+), and CD11b(+) cells was decreased in spinal cords from PSE-treated mice. These findings suggest the potential therapeutic effect of PSE on multiple sclerosis.
PMID: 16751252 [PubMed - indexed for MEDLINE]
link
Abstract
Periploca sepium Bge, a traditional Chinese herb medicine, is used for treating rheumatoid arthritis in China. Followed the bioactivity-guided isolation, the most potent immunosuppressive compound, periplocoside E (PSE), a pregnane glycoside had been identified from Periploca sepium Bge. We investigated the immunosuppressive effects of PSE in vitro and in vivo. The results showed that PSE in a dose-dependent manner significantly inhibited the proliferation of splenocytes induced by concanavalin A, and mixed lymphocyte culture reaction at no cytotoxic concentrations (<5 µM). Administration of PSE suppressed a delayed type hypersensitivity reaction, and ovalbumin (OVA) induced antigen-specific immune responses in mice. In vivo treatment with PSE dose-dependently suppressed OVA-induced proliferation and cytokine (IL-2 and IFN-) production from splenocytes in vitro. Purified T cells from OVA-immunized mice with PSE treatment showed its low ability for activation by OVA plus normal antigen presenting cells stimulation again in vitro. Further studies showed PSE dose-dependently inhibited anti-CD3 induced primary T cell proliferation, activation for IL-2R (CD25) expression, and cytokine (IFN- and IL-2) production also at the transcriptional level. PSE was highly specific, significantly inhibited the activation of ERK and JNK, whereas activation of p38 was not affected in T cells stimulated with anti-CD3. These results demonstrated that PSE is an immunosuppressive compound in Periploca sepium Bge, which directly inhibit T cell activation in vitro and in vivo. This study provided evidence to understand the therapeutic effects of Periploca sepium Bge and indicated that this herb is appropriate for treatment of T cell-mediated disorders, such as autoimmune diseases.
link
Unfortunately, like so many other potential MS herbs, this herb is quite toxic.
Assuming that the binding of gliadin to the CXCR3 receptor is linked to the overexpression of this receptor on activated T cells, I guess the thing to do is avoid gluten. Groan. Again. If only one could actually notice an improvement on avoiding gluten it would seem an easy thing to do. But I never did notice an improvement when I stopped gluten and milk for six months.
Here's wikipedia's definition of this receptor:
Chemokine receptor CXCR3 is a Gαi protein-coupled receptor in the CXC chemokine receptor family. Other names for CXCR3 are G protein-coupled receptor 9 (GPR9) and CD183. There are two variants of CXCR3: CXCR3-A binds to the CXC chemokines CXCL9, CXCL10, and CXCL11[1] whereas CXCR3-B can also bind to CXCL4 in addition to CXCL9, CXCL10, and CXCL11.[2]
CXCR3 is expressed primarily on activated T lymphocytes and NK cells,[3] and some epithelial cells and some endothelial cells. CXCR3 and CCR5 are preferentially expressed on Th1 cells, whereas Th2 cells favor the expression of CCR3 and CCR4. CXCR3 ligands that attract Th1 cells can concomitantly block the migration of Th2 cells in response to CCR3 ligands, thus enhancing the polarization of effector T cell recruitment.
CXCR3 is able to regulate leukocyte trafficking. Binding of chemokines to CXCR3 induces various cellular responses, most notably integrin activation, cytoskeletal changes and chemotactic migration. CXCR3-ligand interaction attracts Th1 cells and promotes Th1 cell maturation.
As a consequence of chemokine-induced cellular desensitization (phosphorylation-dependent receptor internalization), cellular responses are typically rapid and short in duration. Cellular responsiveness is restored after dephosphorylation of intracellular receptors and subsequent recycling to the cell surface. A hallmark of CXCR3 is its prominent expression in in vitro cultured effector/memory T cells, and in T cells present in many types of inflamed tissues. In addition, CXCL9, CXCL10 and CXCL11 are commonly produced by local cells in inflammatory lesion, suggesting that CXCR3 and its chemokines participate in the recruitment of inflammatory cells.[5] Additionally, CXCR3 has been implicated in wound healing.[6]
CXCR3 has been implicated in the following diseases, atherosclerosis,[7] multiple sclerosis,[8] pulmonary fibrosis,[9] type 1 diabetes,[10] autoimmune myasthenia gravis, nephrotoxic nephritis[11], acute cardiac allograft rejection[12] and possibly Celiac Disease[13]. Development of agents to block CXCR3-ligand interactions may provide new ways to treat these diseases.
Strikes me that if gliadin can bind to CXCR3 it can cause all manner of mischief.
3 years antibiotics, 06/09 bilateral jug stents at C1, 05/11 ballooning of both jug valves, 07/12 stenting of renal vein, azygos & jug valve ballooning,